Electromagnetic clutch-brake combinations

INTORQ 14.800 - 14.867

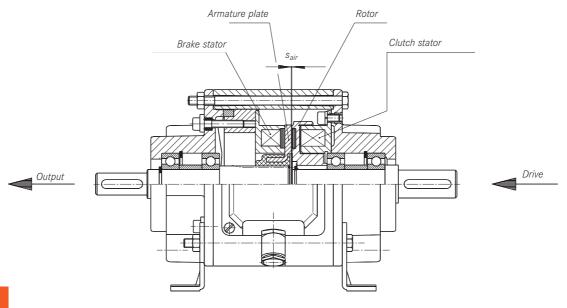
7.5 – 120 Nm

setting the standard

Product information

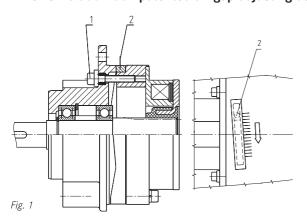
Electromagnetic clutch-brake combinations have been enjoying market success for a number of years. They are used in all areas of mechanical engineering when a production sequence has to be synchronised. As the drive runs continuously with the clutch rotor, the energy from the upstream drive can be used to accelerate the output. INTORQ 14.105/115 series electromagnetic clutches and brakes are used in these clutch-brake combinations. They are switched alternately in order to accelerate or decelerate the output shaft. Torque transmission is achieved using friction.

As well as the basic versions with free drive and output shafts and hollow shafts, clutch-brake combinations are also available with built-on three-phase AC motors and with helical or worm gearboxes mounted at the output end. The drives can be used in either a horizontal or vertical mounting position. Using preassembled units significantly reduces design costs for new developments and the time spent on mounting.

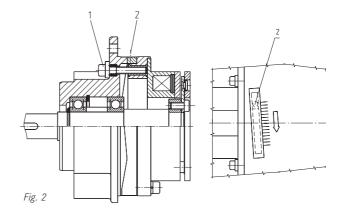

Friction clutches and brakes are subject to a certain amount of wear which is dependent on the switching energy used. Automatic adjusting devices (which are susceptible to faults) are no longer required, thanks to the wear resistant, asbestos-free friction linings used.

Air gap compensation can be carried out quickly and without disassembling the clutch-brake combination thanks to patented wear adjustment.

The low moments of inertia of the wear-resistant armature elements permit high switching frequencies and good positioning accuracy which can be increased still further if required, using the high-speed switchgear that is available.


Features

- Five frame sizes from 7.5 to 120 Nm
- Asbestos-free friction linings
- Patented air gap adjustment can be performed externally without disassembling the combination
- Operating times of the clutch and the brake do not overlap
- A backlash-free version can be supplied on request
- Two shaft and two hollow shaft diameters as well as two flange diameters in IEC dimensions are available for each frame size
- Two axis heights are available for each frame size
- Insulation class B
- Dimensioned for 100% duty
- IP 44 enclosure, higher degrees of protection on request
- Rated voltage 24 V DC, other voltages on request
- Variable terminal box position; standard position is on left when looking at the drive end
- VDE (Association of German Electrotechnical Engineers) 0580



Product information

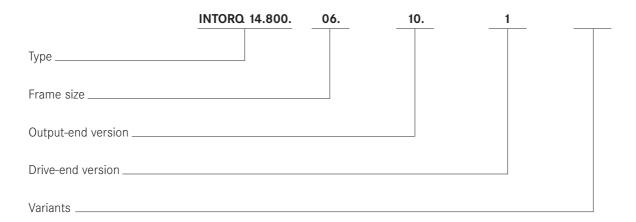
INTORQ 14.800 - 867 patented air gap adjusting device

The same air gap adjusting device is provided for each output cover. The sequence of functions is described below.

The description of the patented adjusting device applies to both versions. If required, the air gap can be compensated as follows:

- Loosen the four screws (1) in the housing cover at the output end until the pressure on the compression springs beneath it is relieved but do not remove them completely.
- Remove the cover from the slot in the housing. Insert a cylindrical pin into the bore hole which then becomes visible. This pin must be capable of radially twisting the ring (2).

■ Turn the ring in the direction of the arrow. When you feel a resistance, turn it back by one scale marking (equal to the rated air gap).


After adjusting the air gap, retighten the screws (1) and insert the cover into the housing.

This simple way of adjusting an air gap can be also be performed easily on built-in combinations.

Type code INTORQ 14.800 - 14.810

Type

INTORQ 14.800 - clutch-brake combinations without motor

INTORQ 14.810 - clutch-brake combinations with motor

Output-end version

- 10 free output shaft, without foot, without flange
- 11 free output shaft, with foot, without flange
- 12 free output shaft, without foot, with flange
- 13 free output shaft, with foot, with flange
- 20 with hollow shaft, without foot, without flange
- 21 with hollow shaft, without foot, with flange
- 22 with hollow shaft, with foot, without flange
- 23 with hollow shaft, with foot, with flange

Drive-end version

- 1 splined armature plate, free drive shaft
- 2 splined armature plate, free drive shaft and flange
- 3 splined armature plate, hollow shaft, B5 flange
- 4 splined armature plate, hollow shaft, B14 flange
- 6 backlash-free diaphragm armature plate, free drive shaft
- 7 backlash-free diaphragm armature plate, free drive shaft and flange
- 8 backlash-free diaphragm armature plate, hollow shaft, B5 flange
- 9 backlash-free diaphragm armature plate, hollow shaft, B14 flange

Variants

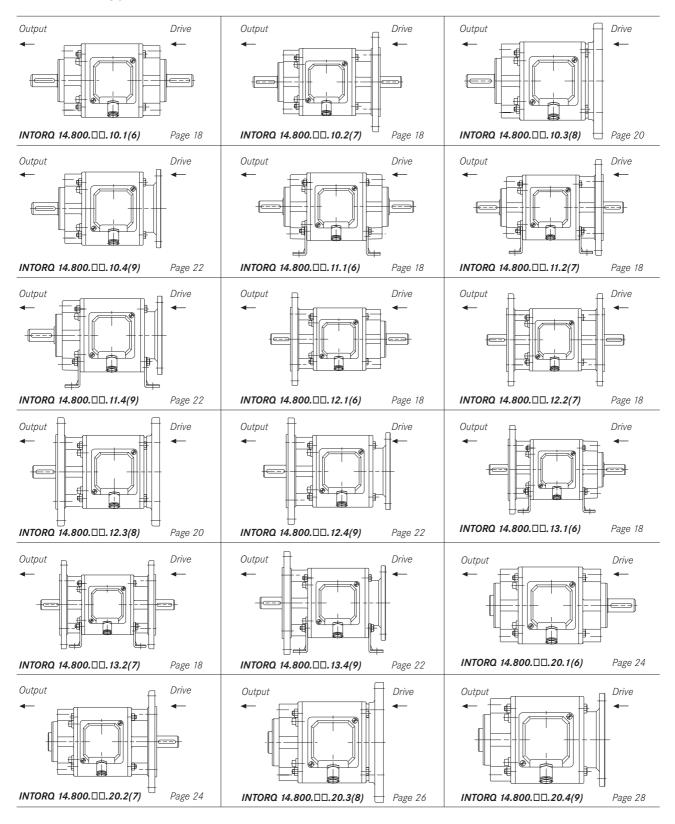
Clutch/brake voltage

Shaft diameter/bore diameter/flange diameter/foot height/terminal box position

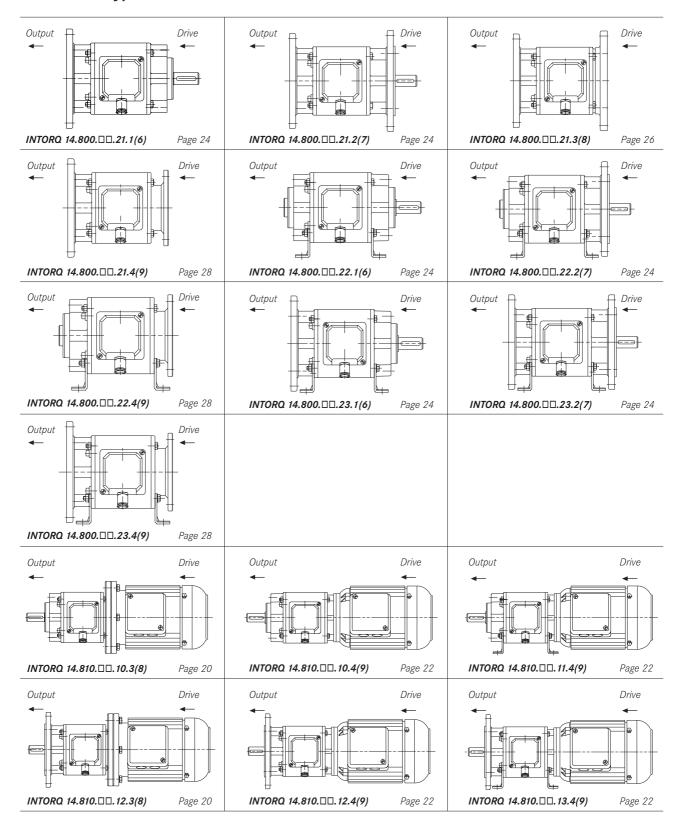
Motor:

Power - voltage

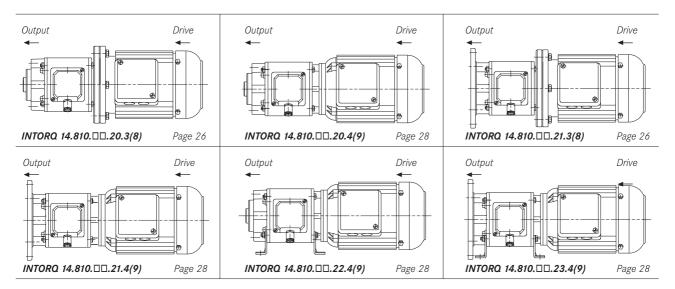
Speed - frequency


Degree of protection

For available motor frame sizes, see page 11.


Design selection INTORQ 14.800

			sions armature plate		d	iaphragm a	ns with rmature pla ish-free)	ıte
Version	10.1	10.2	10.3	10.4	10.6	10.7	10.8	10.9
Drive	Free shaft	Free shaft and B5 flange	Hollow shaft and B5 flange	Hollow shaft and B14 flange	As	As	As	As
Output	Free shaft	Free shaft	Free shaft	Free shaft	10.1	10.2	10.3	10.4
Foot mounting	-	-	_	-				
Version	11.1	11.2	-	11.4	11.6	11.7	-	11.9
Drive	Free shaft	Free shaft and B5 flange	_	Hollow shaft and B14 flange	As	As	-	As
Output	Free shaft	Free shaft	_	Free shaft	11.1	11.2	-	11.4
Foot mounting	With feet	With feet	_	With feet				
Version	12.1	12.2	12.3	12.4	12.6	12.7	12.8	12.9
Drive	Free shaft	Free shaft and B5 flange	Hollow shaft and B5 flange	Hollow shaft and B14 flange	As	As	As	As
Output	Free shaft and B5 flange	Free shaft and B5 flange	Free shaft and B5 flange	Free shaft and B5 flange	12.1	12.2	12.3	12.4
Foot mounting	-	-	_	-				
Version	13.1	13.2	-	13.4	13.6	13.7	-	13.9
Drive	Free shaft	Free shaft and B5 flange	_	Hollow shaft and B14 flange	As	As	-	As
Output	Free shaft and B5 flange	Free shaft and B5 flange	-	Free shaft and B5 flange	13.1	13.2	_	13.4
Foot mounting	With feet	With feet	-	With feet				
Version	20.1	20.2	20.3	20.4	20.6	20.7	20.8	20.9
Drive	Free shaft	Free shaft and B5 flange	Hollow shaft and B5 flange	Hollow shaft and B14 flange	As	As	As	As
Output	Hollow shaft	Hollow shaft	Hollow shaft	Hollow shaft	20.1	20.2	20.3	20.4
Foot mounting	-	-	-	-				
Version	21.1	21.2	21.3	21.4	21.6	21.7	21.8	21.9
Drive	Free shaft	Free shaft and B5 flange	Hollow shaft and B5 flange	Hollow shaft and B14 flange	As	As	As	As
Output	Hollow shaft and B5 flange	Hollow shaft and B5 flange	Hollow shaft and B5 flange	Hollow shaft and B14 flange	21.1	21.2	21.3	21.4
Foot mounting	-	_	-	_				
Version	22.1	22.2	-	22.4	22.6	22.7	-	22.9
Drive	Free shaft	Free shaft and B5 flange	_	Hollow shaft and B14 flange	As	As	_	As
Output	Hollow shaft	Hollow shaft	-	Hollow shaft	22.1	22.2	_	22.4
Foot mounting	With feet	With feet	-	With feet				
Version	23.1	23.2	-	23.4	23.6	23.7	-	23.9
Drive	Free shaft	Free shaft and B5 flange	-	Hollow shaft and B14 flange	As	As	-	As
Output	Hollow shaft and B5 flange	Hollow shaft and B5 flange	_	Hollow shaft and B5 flange	23.1	23.2	_	23.4
Foot mounting	With feet	With feet	_	With feet				


Overview of types

Overview of types

Overview of types

The INTORQ 14.810 is supplied complete with a built-on three-phase AC motor but it is not shown in separate dimension drawings. The dimensions of this clutch-brake combination can be found in the 14.800 dimension tables. For example, the dimensions for the 14.810.06.12.4 version should be taken from the 14.800.06.12.4 dimension table on pages 22/23.

The assignment of the available motor frame sizes and designs can be seen in the table below.

INTORQ	Frame size	Motor design	Flange		
14.810.06.□□.3(8)	71	B5	160		
14.810.06.□□.4(9)	71	B14	C105		
14.810.08.□□.3(8)	80	B5	200		
14.810.08.□□.4(9)	80	B14	C120		
14.810.10.□□.3(8)	90	B5	200		
14.810.10.□□.4(9)	90	B14	C140		
14.810.12.□□.3(8)	100	B5	250		
14.810.12.□□.4(9)	100	B14	C160		
14.810.16.□□.3(8)	132	B5	300		
14.810.16.□□.4(9)	132	B14	C200		

Dimensioning

Selecting the frame size

Dimensioning is carried out in accordance with VDI Guideline 2241.

Symbols used in calculations:

 $\mathbf{M}_{\mathbf{K}}$ Rated torque of the clutch or brake in Nm

M_{load} Load torque in Nm

Ma Acceleration or deceleration torque in Nm

 $\mathbf{M}_{\mathbf{req}}$ Required torque in Nm

P Drive power in kW

 Δn_o Initial relative speed of the clutch or brake in rpm

J_{load} Moment of inertia of all output components reduced to the clutch shaft in kgm²

Slipping time in seconds during which there is a relative movement between the drive and output if the clutch or brake is closed

 $\mathbf{t_{11}}$ Engagement delay time in seconds, i.e. the time from switching the voltage on to experiencing an increase in torque

 $\mathbf{t_{12}}$. Torque rise time in seconds, i.e. the time from the start of the torque increase until rated torque \mathbf{M}_K is reached

 $\mathbf{t_1}$ Engagement time in seconds, i.e. the sum of $\mathbf{t_{11}} + \mathbf{t_{12}}$

 ${f t_2}$ Disengagement time in seconds, i.e. the time from switch-off until 10% of characteristic torque ${f M}_{f K}$ is reached

K Safety factor ≥ 2

Q Calculated switching energy per switching cycle in J

 $\mathbf{Q_E}$ Max. permissible switching energy for one switching operation in J, in accordance with the table on page 18

Q_{perm} Max. permissible switching energy in J

S_h Operating frequency in rph, i.e. the number of working cycles distributed evenly over the time period

 $\mathbf{Z}_{\mathbf{N}_{\mathbf{A}}}$ Number of switching operations until readjustment

The required frame size is dimensioned essentially in accordance with the required torques or braking torques. The inertias to be accelerated or braked (moments of inertia), the relative speeds, the acceleration or deceleration times, the required operating frequencies and the desired service life should all be included in the calculation. The ambient conditions for the site of use of housing clutches should be known. Such conditions would include, for example, extraordinary ambient temperatures, extremely high air humidity and dust accumulation.

Friction surfaces must always be kept free of oil and grease.

Dimensioning

Safety factor

In order to achieve the required transmission security even in extreme operating conditions, the calculated torque is multiplied by safety factor K. The value of K is determined by the operating conditions.

$$K \ge 2$$

Load types

In practice, the following load types mainly occur:

Purely dynamic load

A purely dynamic load is present when flywheels, rolls or similar are to be accelerated or decelerated and the static load torque is negligible.

$$M_{req} = M_a \cdot K \leq M_K$$

$$M_a = \frac{J_{load} \cdot \Delta n_0}{9.55 \cdot \left(t_3 - \frac{t_{12}}{2}\right)}$$

$$\mathsf{M}_{\mathsf{a}} = \frac{\mathsf{J}_{\mathsf{load}} \cdot \Delta \mathsf{n}_{\mathsf{0}}}{9.55 \cdot \left(\mathsf{t}_{\mathsf{3}} - \frac{\mathsf{t}_{\mathsf{12}}}{2}\right)} \qquad \qquad \mathsf{M}_{\mathsf{req}} = \frac{\mathsf{J}_{\mathsf{load}} \cdot \Delta \mathsf{n}_{\mathsf{0}}}{9.55 \cdot \left(\mathsf{t}_{\mathsf{3}} - \frac{\mathsf{t}_{\mathsf{12}}}{2}\right)} \cdot \mathsf{K}$$

Dynamic and static load

The majority of applications belong to this mixed category, as a dynamic load is present in addition to a static load torque in most cases.

The required frame size is usually calculated using the clutch or acceleration process.

$$M_{req.} = (M_a \pm M_{load}) \cdot K \le M_K$$

$$M_{req} = \left[\frac{J_{load} \cdot \Delta n_0}{9.55 \cdot \left(t_3 - \frac{t_{12}}{2} \right)} \pm M_{load} \right] \cdot K$$

+M_{load} = engage clutch or accelerate

-M_{load} = brake or decelerate

Estimated required torque or frame size

If only the drive power to be transmitted is known, the required torque or braking torque can be determined as follows:

$$M_{req} = 9550 \frac{P}{n} \cdot K \le M_K$$

Acceleration and delay time

If the rated torque is specified and the moment of inertia and load torque are both known, the acceleration or delay time can be determined as follows:

$$t_3 = \frac{J_{load} \cdot \Delta n_0}{9.55 \cdot (M_K \pm M_{load})} + \frac{t_{12}}{2}$$

-M_{load} = engage clutch or accelerate

+M_{load} = brake or decelerate

Dimensioning

Thermal load

When dimensioning clutches and brakes, other important factors to be taken into account are the switching energy per switching cycle and the operating frequency. The available switching energy per switching cycle (engaging the clutch and braking) is calculated using the formula below:

The permissible friction energy per switching cycle at a given operating frequency can be taken from the diagram on page 16. If the friction energy per switching cycle is known, the permissible operating frequency can also be taken from the diagram.

$$Q = \frac{J_{load} \cdot \Delta n_0^2}{182.5} \cdot \left(\frac{M_K}{M_K - M_{load}} + \frac{M_K}{M_K + M_{load}} \right)$$

Example

The following technical data is known for a packaging machine's positioning mode:

$$J_{load}$$
 = 0.01 kgm² total
 M_{load} = 6 Nm
 Δn_o = 700 rpm
 t_3 =0.15 s
 S_h = 4000 switching operations per hour

$$M_a = \frac{J_{load} \cdot \Delta n_0^2}{9.55 \cdot \left(t_3 - \frac{t_{12}}{2}\right)} = \frac{0.01 \cdot 700}{9.55 \cdot (0.15 - 0.03)}$$

$$\frac{t_{12}}{2}$$
 assuming 0.03 s

$$M_a = 6.1 \text{ Nm } M_{req} = (M_a + M_{load}) \cdot K = (6.1 + 6) \cdot 2 M_{req} = 24.2 \text{ Nm}$$

Selected clutch-brake combination:

INTORQ 14.800.10.11.1

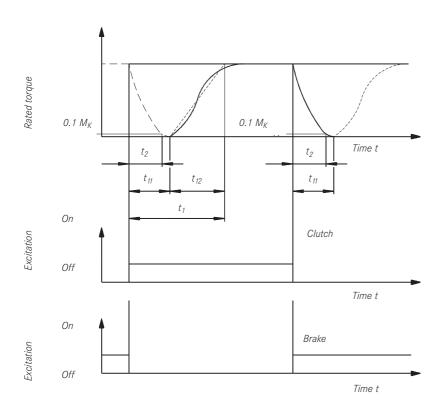
With $M_K = 30 \text{ Nm}$

Calculation of the available switching energy per switching cycle:

$$Q = \frac{J_{load} \cdot \Delta n_0^2}{182.5} \cdot \left(\frac{M_K}{M_K - M_{load}} + \frac{M_K}{M_K + M_{load}} \right) \qquad \qquad Q = \frac{0.01 \cdot 700^2}{182.5} \cdot \left(\frac{30}{30 - 6} + \frac{30}{30 + 6} \right) \qquad Q = 55.9 \text{ J}$$

See the diagram (page 16) for $\ensuremath{S_{\text{perm}}}$ depending on the calculated switching energy.

The required operating frequency is permissible at the calculated switching energy for the selected frame size (10).


Ordering example

INTORQ 14.800.10.11.1 24 V DC, shaft Ø 19 mm/19 mm

Dimensioning

Operating times

The operating times listed in the tables apply to switching on the DC side with a rated air gap and warm coil. These are mean values whose leakage depends on the rectification type and the air gap S_{air} .

Time concepts when engaging and disengaging

 t_{11} = Delay time

 t_{12} = Rise time of torque

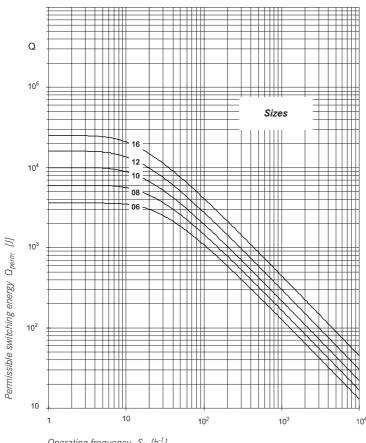
 t_1 = Engagement time

 t_2 = Disengagement time:

 t_2 brake $\approx t_{11}$ clutch

 t_2 clutch $\approx t_{11}$ brake

Operating times in milliseconds


Frame size	INTORQ 14.800/810/852 to 867 and 14.137/138											
		E cl	utch	E brake								
	t ₁₁ ≈ t ₂	t ₁₂	t ₁	t ₁₂	t ₁							
06	20	35	55	25	45							
08	25	70	95	30	55							
10	35	85	120	50	85							
12	50	120	170	75	125							
16	65	145	210	85	150							

Selection table

INTOF 14.800 -		M _K ¹⁾ Nm		o ²⁾ N	n _{max} rpm	Q _E J	Moments of inertia J x 10 ⁻⁵ , kgm ²					
Armature design	Frame size	14.105 14.115	Clutch	Brake			Rotor	Armature plate	Output shaft			
	06	7.5	15	11.5		3.6 x 10 ³	11.9	4.2	0.7			
With splined	08	15	20	16		6 x 10 ³	26.6	13.9	2.4			
armature	10	30	28	21	3000	10 x 10 ³	78	41.4	6.5			
plate	12	60	35	28		16 x 10 ³	226	120	15.8			
	16	120	50	38		25 x 10 ³	630	378	64			
With	06	7.5	15	11.5		3.6 x 10 ³	11.9	6.5	1.2			
backlash-free	08	15	20	16		6 x 10 ³	26.6	25.3	3.7			
armature	10	30	28	21	3000	10 x 10 ³	78	82.1	10.2			
plate	12	60	35	28		16 x 10 ³	226	241	23.3			
	16	120	50	38		25 x 10 ³	630	800	85			

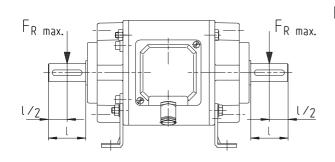
[■] Standard voltage 24 V DC

INTORQ 14.800/810/852 ÷ 867 and 14.137/138

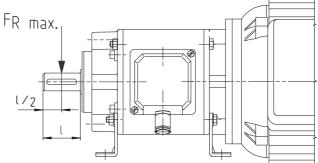
Operating frequency S_h [h^{-1}]

 $[\]blacksquare$ 1) M_K, in relation to = 100 rpm

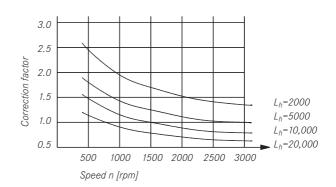
^{■ &}lt;sup>2)</sup> At 20°C


Shaft loads

The radial forces specified in the table relate to the centre of the shaft ends. $F_{r\,max}$ is the maximum permissible radial force in relation to the shaft strength.


Force F_{rated} underlies a bearing service life of $L_h = 10,000$ hours at n = 1500 rpm.

These values can be converted to other service lives and speeds with the aid of the diagram. However, you should ensure that force $F_{r\,max}$ is not exceeded. If additional axial forces are present, please inform us of them so that we can perform a recalculation.


INTORQ 14.800

INTORQ 14.810

Frame size	Force F _{r max.} [N]	Force F _{rated} [N]				
06	600	325				
08	900	425				
10	1300	590				
12	1900	870				
16	2300	1350				

$$F = F_{rated} \cdot k \le F_{r max}$$

F Permissible radial force in N

 $\mathbf{F_{r\,max}}$. Max. permissible radial force in N,

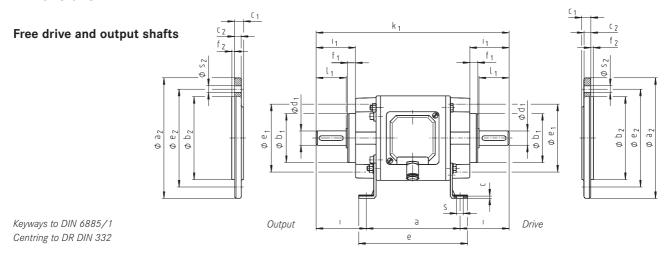
in relation to shaft strength

 \mathbf{F}_{rated} Permissible radial force in N for $L_h = 10,000 \text{ h}$

and n = 1500 rpm

k Correction factor from diagram

Example:


Frame size 08

Speed n = 500 rpm

Service life $L_h = 5000$ hours

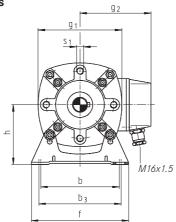
 $F = 425 \cdot 1.8 = 765 \text{ N} < F_{r \text{ max.}} = 900 \text{ N}$

Dimensions

INTORQ 14.800.□□.11.1(6) basic version

		Clutch	Brake	b ₁	e ₁	d ₁	f ₁	g ₁	g ₂	h	i ₁	k ₁	I ₁	s ₁	m
Frame	M _K	Р	20	h8		k6									kg
size	Nm	W	W												
06	7.5	15	11.5	52	67	11	10	90	89	63	35	183	23	M6	3
00	7.5	15	11.5	32	07	14	10	90	09	71	42	197	30	IVIO	3
08	15	20	16	65	90	14	10	112	95	71	42	230	30	- M8	4.5
08	15	20	10	00	90	19	10	112	95	80	52	250	40	IVIO	4.5
10	30	28	21	78	115	19	19	140	110	80	62	280	40	M10	8
10	30	20	21	/ 0	113	24	19	140	110	90	72	300	50	IVITO	0
12	60	35	28	78	115	24	20	167	136	100	72	324	50	M10	13
12	00	33	20	/ 0	113	28	20	107	130	112	82	344	60	IVITO	13
14	100	F.O.	20	00	145	28	20	210	150	112	82	380	60	M10	25
16	120	50	38	98	145	38	20	210	158	132	102	420	80	M12	25

Feet


Frame size	а	b	b ₃	С	е	f	i	S	m kg	
06	100	80	85	3	115	100	41.5	7	0.2	
00	100		00		110	100	48.5	,	0.2	
08	120	105	110	3	140	130	55	9	0.3	
00	120	103	110	3	140	130	65	7	0.5	
10	140	130	140	4	165	160	70	9	0.4	
10	140	130	140	4	103	100	80	7	0.4	
12	160	150	160	5	184	180	82	11	0.7	
12	100	130	100	J	104	100	92	11	0.7	
16	185	185	195	6	215	222	97.5	13	1.2	
10	100	100	190	6	215	215	223	117.5	13	1.2

Flange

Fram size	- 2	b ₂ j7	C ₁	c ₁ c ₂		f ₂	s ₂	m kg
06	140	95	12	10	115	3	9	0.4
00	160	110	12	10	130	3.5	9	0.5
08	160	110	12	9	130	3.5	9	0.5
08	200	130	12	9	165	3.3	11.5	0.7
10	200	130	22	15	165	3.5	11	0.8
10	250	180	2.2	13	215	4	13.5	1.1
12	200	130	22	15	165	3.5	11	0.8
12	250	180	2.2	13	215	4	13.5	1.1
16	250	180	22	15	215	4	13.5	1.3
10	300	230	22	15	265	4	13.3	2.0

Dimensions

Free drive and output shafts

INTORQ	Feet	Drive B5 flange	Output B5 flange
14.800.□□.10.1[6]	-	-	-
14.800.□□.10.2[7]	-	•	-
14.800. 🗆 🗆 . 11.1 [6]	•	-	-
14.800.□□.11.2[7]	•	•	-
14.800. 🗆 🗆 . 12.1 [6]	-	-	•
14.800.□□.12.2[7]	-	•	•
14.800.□□.13.1[6]	•	-	•
14.800.□□.13.2[7]	•	•	•

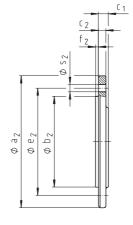
Order data

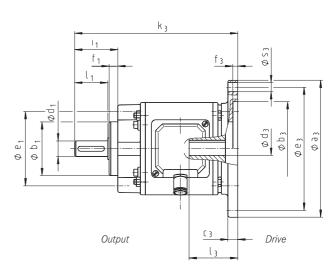
General - Type designation with specification of frame

size and rated voltage

Diameters of drive and output shafts

If required - Diameters of drive and output flanges


Foot height


Backlash-free armature plate

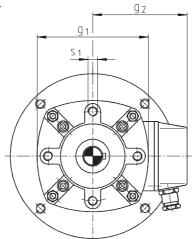
[value in brackets in the type designation]

Dimensions

Drive, hollow shaft, B5 flange – free output shaft

Keyways to DIN 6885/1 Keyways to DIN 6885/1JS9 Centring to DR DIN 332

INTORQ 14.800.□□.10.3[8] basic version


		Clutch	Brake																				
Frame	M _K	Р	20	a ₃	b ₁	b ₃	c ₃	d ₁	d ₃	e ₁	e ₃	f ₁	f ₃	g ₁	g ₂	i ₁	k ₃	I ₁	I ₃	s ₁	s ₃	g	m
size	Nm	W	W		h8	Н9		k6	G7														kg
06	7.5	15	11.5	140	52	95.2	10	11	11	67	115	10	4	90	89	35	146	23	40	M6	M8	9	2.5
00	7.5	15	11.5	160	32	110.2	10	14	14	07	130	10	4	70	07	42	153	30	40	IVIO	10	7	2.5
08	15	20	16	160	65	110.2	14	14	14	90	130	10	4	112	95	42	184	30	50	M8	M8	9	4.5
08	13	20	10	200		130.2		19	19	90	165		4	112	93	52	194	40	30	IVIO	11.5	7	4.5
10	30	28	21	200	78	130.2	13	19	19	115	165	19	4	140	110	62	217	40	60	M10	M10	9	7.5
10	30	20	21	250		180.2		24	24	113	215	17	5	140	110	72	227	50	00	IVITO	13.5	7	7.3
12	60	35	28	200	78	130.2	16	24	24	115	165	20	4	167	136	72	251	50	70	M10	M10	11	12
12	00	33	20	250		180.2		28	28	113	215	20	5	107	130	82	261	60	//	IVITO	M12	11	12
16	120	50	38	250	98	180.2	20	28	28	145	215	20	5	210	150	82	294	60	80	N/12	M12	11	22
10	120	30	30	300		230.2	20	38	38	143	265)	210	130	102	314		100	IVITZ	IVIIZ	11	

Output flange

Frame size	a ₂	b ₂ j7	C ₁	c ₂	e ₂	f ₂	s ₂	m kg
06	140	95	12	10 10 115 3		9	0.4	
00	160	110	12	10	130	3.5	9	0.5
08	160	110	12	9	130	3.5	9	0.5
06	200	130	12	9	165	3.0	11.5	0.7
10	200	130	22	15	165	3.5	11	0.8
10	250	180	22	15	215	4	13.5	1.1
12	200	130	22	15	165	3.5	11	0.8
12	250	180	22	15	215	4	13.5	1.1
16	250	180	22	15	215	1	13.5	1.3
10	300	230	22	10	265	4	13.5	2.0

Dimensions

Drive, hollow shaft, B5 flange – free output shaft

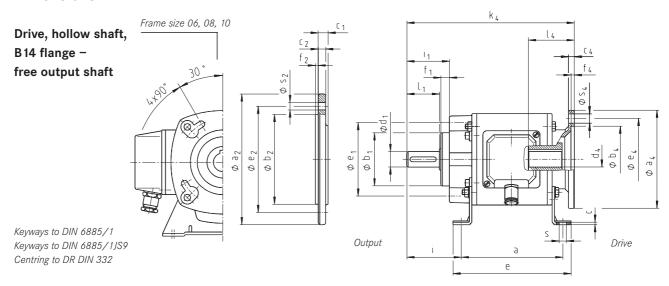
INTORQ	Drive B5 flange	Output B5 flange
14.800.□□.10.3[8]	•	-
14.800.□□.12.3[8]	•	•

Order data

General - Type designation with specification of frame

size and rated voltage

Diameter of drive hollow shaft Diameter of drive flange


Diameter of output shaft

If required - Diameter of output flange

Backlash-free armature plate

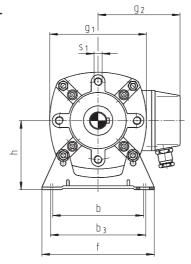
[value in brackets in the type designation]

Dimensions

INTORQ 14.800.□□.11.4[9] basic version

		Clutch	Brake																					
Frame	M _K	Р	20	a ₄	b ₁	b ₄	c ₄	d ₁	d_4	e ₁	e ₄	f ₁	f ₄	g ₁	g ₂	h	i ₁	k ₄	I ₁	I ₄	s ₁	s ₄	g	m
size	Nm	W	W		h8	Н9		k6	G7															kg
06	7.5	15	11.5	105	52	70.2	5.5	11	11	67	85	10	3	90	89	63	35	152	23	50	M6	7	9	3
00	7.5	10	11.5	105	32	70.2	5.5	14	14	07	00	10	3	90	09	71	42	159	30	30	IVIO	/	9	3
00	15	20	1.4	120	4 E	00.2	7	14	14	90	100	10		110	95	71	42	186	30	58	140	7	9	A E
08	15	20	16	120	65	80.2	/	19	19	90	100	10	4	112	95	80	52	196	40	58	M8	/	9	4.5
10	20	20	01	140	78	05.0	0	19	19	115	115	10		140	110	80	62	225	40	70	MIO	9	9	
10	30	28	21	140	/8	95.2	8	24	24	115	115	19	4	140	110	90	72	235	50	70	M10	9	9	8
12	(0	25	0.0	1/0	78	110.0	8	24	24	115	130	20		1/7	10/	100	72	261	50	80	N410	9	11	13
12	60	35	28	160	/8	110.2	8	28	28	115	130	20	4	167	136	112	82	271	60	80	M10	9	11	13
47	100	F0	20	200	00	100.0	10	28	28	145	1/5	00	_	010	150	112	82	309	60	0.7	N410	10	11	0.4
16	120	50	38	200	98	130.2	10	38	38	145	165	20	5	210	158	132	102	329	80	97	M12	12	11	24

Feet


Frame size	а	b	b ₃	С	е	f	i	s	m kg		
06	100	80	85	3	115	100	41.5	7	0.2		
							48.5				
08	120	105	110	3	140	130	55	9	0.3		
00	120	103	110	0	140	100	65	/	0.0		
10	140	130	140	4	165	160	70	9	0.4		
10	140	150	140	+	103	100	80	7	0.4		
12	160	150	160	5	184	180	82	11	0.7		
12	100	130	100	5	104	100	92	- 11	0.7		
16	185	185	195	6	6 215 223		6 215 223 97.5 117.5		97.5	13	1.2
10	100	100	193	O O					13	1.2	

Output flange

Frame size	a ₂	b ₂ j7	C ₁	c ₂	e ₂	f ₂	s ₂	m kg
06	140	95	12	10	115	3	9	0.4
00	160	110	12	10	130	3.5	9	0.5
08	160	110	12	9	130	3.5	9	0.5
UO	200	130	12	9	165	3.5	11.5	0.7
10	200	130	22	15	165	3.5	11	0.8
10	250	180		15	215	4	13.5	1.1
12	200	130	22	15	165	3.5	11	0.8
12	250	180		15	215	4	13.5	1.1
14	250	180	22	15	215	4	12.5	1.3
16	300	230	22	15	265	4	13.5	2.0

Dimensions

Drive, hollow shaft, B14 flange – free output shaft

INTORQ	Feet	Output B5 flange
14.800.□□.10.4[9]	-	-
14.800.□□.11.4[9]	•	-
14.800.□□.12.4[9]	-	•
14.800. 🗆 🗆 . 13.4[9]	•	•

Order data

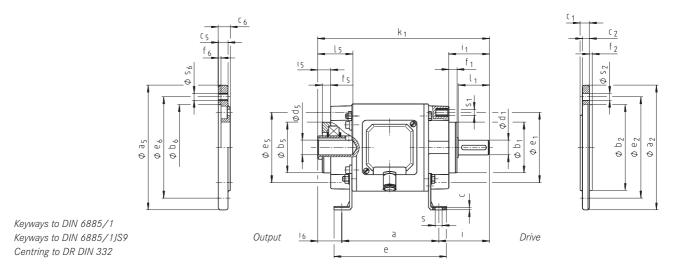
General - Type designation with specification of frame

size and rated voltage

Diameter of drive hollow shaft

Diameter of output shaft

If required - Diameter of output flange


Foot height

Backlash-free armature plate

[value in brackets in the type designation]

Dimensions

Drive, free shaft - output, hollow shaft

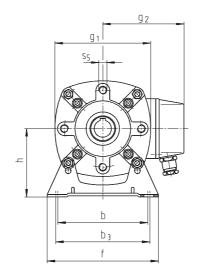
INTORQ 14.800.□□.22.1[6] basic version

		Clutch	Brake																			
Frame	M_K		P ₂₀	b ₁	b ₅	d ₁	d ₅	e ₁	e ₅	f ₁	f ₅	g ₁	g ₂	h	i ₁	i ₅	k ₁	I_1	I ₅	s ₁	s ₅	m
size	Nm	W	W	h8	h8	k6	G7															kg
06	7.5	15	11.5	52	52	11	11	67	67	10	10	90	89	63	35	14	162	23	23	M6	M6	2.8
00	7.5	13	11.5	32	32	14	14	07	07	10	10	70	07	71	42	14	169	30	30	IVIO	IVIO	2.0
08	15	20	16	65	65	14	14	90	90	10	10	112	95	71	42	17	205	30	30	M8	M8	4.5
06	13	20	10	05	05	19	19	90	90	10	10	112	95	80	52	17	216	40	40	IVIO	IVIO	4.5
10	30	28	21	78	86	19	19	115	115	19	17	140	110	80	62	17	237	40	40		M10	8
10	30	20	21	/ 0	00	24	24	113	113	19	17	140	110	90	72	17	247	50	50	IVITO	IVITO	0
12	60	35	28	78	98	24	24	115	115	20	20	167	107	100	72	20	273	50	50		M10	13
12	00	33	20	/ 0	90	28	28	113	113	20	20	107	136	112	82	20	283	60	60	IVITO	IVITO	13
47	100	F0	20		100	28	28	145	145	20	01	010	150	112	82	۵۲ ۲	324	60	60		N410	
16	120	50	38	98	120	38	38	145	145	20	21	210	158	132	102	25.5	344	80	80	IVIIZ	M12	25

Feet

Frame size	а	b	b ₃	С	е	f	i	i ₆	s	m kg
06	100	80	85	3	115	100	41.5 48.5		7	0.2
08	120	105	110	3	140	130	55 65		9	0.3
10	140	130	140	4	165	160	70 80		9	0.4
12	160	150	160	5	184	180	82 92		11	0.7
16	185	185	195	6	215	223	97.5 117.5		13	1.2

Drive flange


Frame size	a ₂	b ₂ j7	c ₁	c ₂	e ₂	f ₂	s ₂	m kg
06	140 160	95 110	12	10	115 130	3 3.5	9	0.4 0.5
08	160 200	110 130	12	9	130 165	3.5	9 11.5	0.5 0.7
10	200 250	130 180	22	15	165 215	3.5 4	11 13.5	0.8 1.1
12	200 250	130 180	22	15	165 215	3.5 4	11 13.5	0.8 1.1
16	250 300	180 230	22	15	215 265	4	13.5	1.3 2.0

Output flange

Frame size	a ₅	ь ₆ Н9	c ₅	c ₆	e ₆	f ₆	s ₆	m kg
06	140 160	95.2 110.2	13	15	115 130	4	9	0.4 0.5
08	160 200	110.2 130.2	14	18	130 165	4	M8 11.5	0.5 0.7
10	200 250	130.2 180.2	13	18	165 215	4 5	M10 13.5	0.8 1.1
12	200 250	130.2 180.2	16	21	165 215	4 5	M 10 M 12	0.8 1.1
16	250 300	180.2 230.2	20	27	215 265	5	M 12	1.3 2.0

Dimensions

Drive, free shaft - output, hollow shaft

INTORQ	Feet	Drive B5 flange	Output B5 flange
14.800.□□.20.1[6]	-	_	_
14.800.□□.20.2[7]	-	•	_
14.800.□□.21.1[6]	-	_	•
14.800. 🗆 🗆 . 21.2 [7]	-	•	•
14.800. 🗆 🗆 . 22.1 [6]	•	_	_
14.800. 🗆 🗆 . 22.2 [7]	•	•	_
14.800. 🗆 🗆 . 23.1 [6]	•	_	•
14.800.□□.23.2[7]	•	•	•

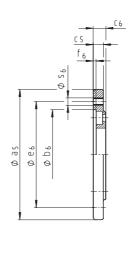
Order data

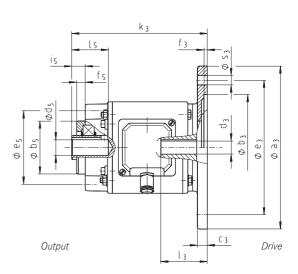
General - Type designation with specification of frame

size and rated voltage Diameters of drive shaft and

output hollow shaft

If required - Diameters of drive and output flanges


Foot height


Backlash-free armature plate

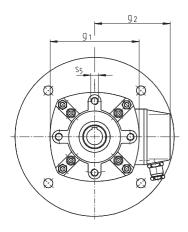
[value in brackets in the type designation]

Dimensions

Drive, hollow shaft, B5 flange - output, hollow shaft

Keyways to DIN 6885/1JS9

INTORQ 14.800.□□.20.3[8] basic version


		Clutch	Brake																			
Frame	M _K	Р	20	a ₃	b ₃	b ₅	c ₃	d ₃	d ₅	e ₃	e ₅	f ₃	f ₅	g ₁	g ₂	i ₅	k ₃	I ₃	l ₅	s ₃	s ₅	m
size	Nm	W	W		Н9	h8		G7	G7													kg
06	7.5	15	11.5	140	95.2	52	10	11	11	115	67	5	10	90	89	14	125	40	23	M8	M6	2.5
00	7.5	15	11.5	160	110.2	32	10	14	14	130		J	10	70	07	14	123	40	30	10	IVIO	2.5
08	15	20	16	160	110.2	65	1/	14	14	130	90	4	10	112	95	17	159		30	M8	M8	4.5
UO	13	20	10	200	130.2	0.5	14	19	19	165	90	4	10	112	93	17	139	50	40	11.5	IVIO	4.5
10	30	28	21	200	130.2	0.6	12	19	19	165	115	4	17	140	110	17	174	60	40	M10	M10	7.5
10	30	20	21	250	180.2	00	13	24	24	215		5	17	140	110	17	174	00	50	13.5	IVITO	7.5
12	60	35	28	200	130.2	0.0	1.4	24	24	165	115	4	20	167	136	20	201	70	50	M10	M10	12
12	00	30	20	250	180.2	90	10	28	28	215	113	5	20	107	130	20	201	70	60	M12	IVITO	12
16	120	50	20	250	180.2	120	20	28	28	215	145	5	01	210	150	25.5	220	0.0	60	N/10	M12	22
10	120	50	38	300	230.2	120	20	38	38	265	145	0	21	210	138	25.5	238	80	80	IVI I Z	IVI I Z	

Output flange

Frame size	a ₅	ь ₆ Н9	C ₅	c ₆	e ₆	f ₆	s ₆	m kg
06	140 160	95.2 110.2	13	15	115 130	4	9	0.4 0.5
08	160 200	110.2 130.2	14	18	130 165	4	M8 11.5	0.5 0.7
10	200 250	130.2 180.2	13	18	165 215	4 5	M 10 13.5	0.8 1.1
12	200 250	130.2 180.2	16	21	165 215	4 5	M 10 M 12	0.8 1.1
16	250 300	180.2 230.2	20	27	215 265	5	M12	1.3 2.0

Dimensions

Drive, hollow shaft, B5 flange - output, hollow shaft

INTORQ	Drive B5 flange	Output B5 flange
14.800.□□.20.3[8]	•	-
14.800.□□.21.3[8]	•	•

Order data

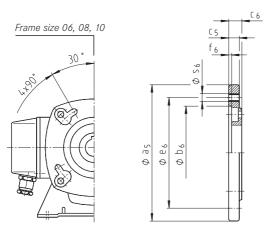
General - Type designation with specification of frame

size and rated voltage

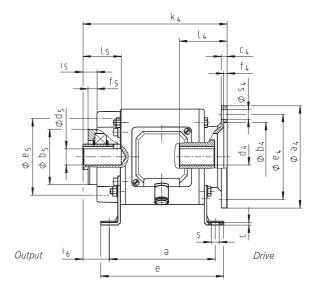
Diameter of drive hollow shaft

Diameter of drive flange

Diameter of output hollow shaft


If required - Diameter of output flange

Backlash-free armature plate


[value in brackets in the type designation]

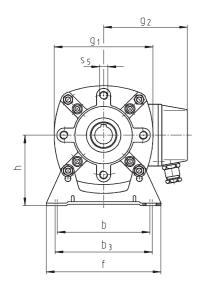
Dimensions

Drive, hollow shaft, B14 flange - output, hollow shaft

INTORQ 14.800.□□.22.4[9] basic version

		Clutch	Brake																				
Frame	M _K	F	20	a ₄	b ₄	b ₅	c ₄	d_4	d ₅	e ₄	e ₅	f ₄	f ₅	g ₁	g ₂	h	i ₅	k ₄	I ₄	l ₅	s ₄	s ₅	m
size	Nm	W	W		Н9	h8		G7	G7														kg
06	7.5	15	11.5	105	70.5	52	5.5	11	11	85	67	3	10	90	89	63	14	131	50	23	7	M6	2.8
00	7.0	15	11.5	103	70.5	52	0.0	14	14	03	07	0	10	/0	07	71	17	101	50	30	,	IVIO	2.0
08	15	20	16	120	80.2	65	7	14	14	100	90	4	10	112	95	71	17	161	58	30	7	M8	4.5
00	15	20	10	120	00.2	03		19	19	100	70	4	10	112	7.5	80	17	101	50	40	/	IVIO	4.5
10	30	28	21	140	95.2	86	8	19	19	115	115	4	17	140	110	80	17	182	70	40	9	M10	8
10	50	20	21	140	75.2			24	24	113	113		17	140	110	90	17	102		50		IVITO	
12	60	35	28	160	110.2	98	8	24	24	130	115	4	20	167	136	100	20	211	80	50	9	M10	13
12	00	33	20	100	110.2	70	0	28	28	130	113	4	20	107	130	112	20	211	00	60	7	IVITO	13
16	120	50	38	200	130.2	120	10	28	28	165	145	5	21	210	158	112	25.5	253	97	60	12	M12	24
10	120	30	30	200	130.2	120	10	38	38	100	143	3	41	210	130	132	23.3	233	7/	80	12	IVITZ	24

Feet


Frame size	а	b	b ₃	С	е	f	i ₆	s	m kg
06	100	80	85	3	115	100	20.5	7	0.2
08	120	105	110	3	140	130	30	9	0.3
10	140	130	140	4	165	160	27	9	0.4
12	160	150	160	5	184	180	31	11	0.7
16	185	185	195	6	215	223	41.5	13	1.2

Output flange

Fran size	a ₅	ь ₆ Н9	c ₅	c ₆	e ₆	f ₆	s ₆	m kg
06	140 160	95.2 110.2	13	15	115 130	4	9	0.4 0.5
08	160 200	110.2 130.2	14	18	130 165	4	M8 11.5	0.5 0.7
10	200 250	130.2 180.2	13	18	165 215	4 5	M 10 13.5	0.8 1.1
12	200 250	130.2 180.2	16	21	165 215	4 5	M 10 M 12	0.8 1.1
16	250 300	180.2 230.2	20	27	215 265	5	M12	1.3 2.0

Dimensions

Drive, hollow shaft, B14 flange - output, hollow shaft

INTORQ	Feet	Output B5 flange
14.800.□□.20.4[9]	-	-
14.800.□□.21.4[9]	-	•
14.800. 🗆 🗆 . 22.4 [9]	•	-
14.800.□□.23.4[9]	•	•

Order data

General – Type designation with specification of frame

size and rated voltage

Diameter of drive hollow shaft Diameter of output hollow shaft

If required - Diameter of output flange

Foot height

Backlash-free armature plate

[value in brackets in the type designation]

INTORQ 14.640.10.048 EDS 48 electronic dual switch

Application area

Using 24 V standard excitation to switch:

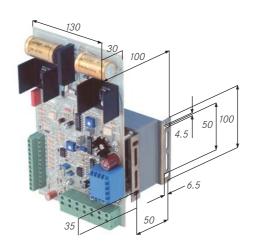
- Clutch-brake combinations
- Other coils which are switched on the DC side in alternating or parallel operation

The EDS 48 electronic dual switch is ideal for controlling two coils.

Features

The EDS 48 electronic dual switch contains the complete power supply for a 24 V DC voltage coil and can be operated using control voltages (e.g. from a PLC) or pulses. A pulse at the START input switches the clutch on until a pulse at the STOP input switches the clutch off and the brake on. A program switch can be used to preselect the type of brake to be controlled (electromagnetic or spring-applied brake).

Note:


When using spring-applied brakes, the transformer power must be dimensioned for the sum of the clutch and braking powers.

Delay times can be set on two potentiometers to prevent clutches and brakes that do not have a common armature element working in opposition. The input electronics are potential-free and isolated from the power section by an optocoupler.

For safety reasons, the clutch is always set to "off" and the brake to "on" following mains connection or the closing of switch a1. The device is able to execute the first start command (clutch ON) approximately one second later. If a start command is already present at the input before the mains connection is made, the brake remains switched on until a new start command is sent.

If required, switch a1 can serve as an "emergency-off" switch.

EDS 48 dimensions

Technical data

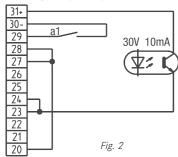
Standard excitation			24 V
Input voltage		230 V, 50	/60 Hz
Coil voltage			24 V
Max. coil power: With EDS	48 type 14.64	0.10.048	50 W
Max. operating frequency:	Up to35 W	Five sw	itching
		operati	ons/s
	Up to 50 W	Two sw	itching
		operati	ons/s
Connectable coils		Tw	o units
Max. control current at 24	V	10 mA a	approx.
Auxiliary supply at terminals	s 30 and 31		15 V
Max. current of the auxiliary	y supply		30 mA
Max. delay time		2	250 ms
Control pulses			≥ 3 ms
EDS 48 weight			1.8 kg

Control options

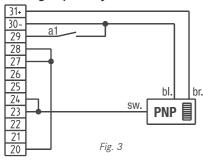
- PLC (programmable logic controller)
- Contacts
- NPN (PNP) proximity switch
- NPN (PNP) photoelectric barriers

INTORQ 14.640.10.048 EDS 48 electronic dual switch

Connection examples

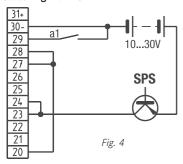

Control via continuous signals

Switching via contact


Pressing the a2 switch turns the brake "off" and the clutch "on" (start), if a1 is not closed. If a2 is opened, the clutch switches "off" and the brake "on" (stop). The first start command is executed no earlier than approximately 1 second after the mains voltage is switched on or after a1 is opened.

Switching via optocoupler

This example is as Fig. 1, but an optocoupler or a transistor is used instead of a contact.


Switching via proximity switch

This example is as Fig. 1, but a PNP proximity switch is used instead of a contact.

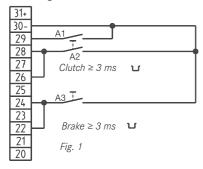
Colours: bk. = black/bl. = blue/br. = brown
Proximity switch damped = clutch "on"/brake "off"
Proximity switch free = brake "on"/clutch "off"

Switching via PLC

In this example, a PLC with a control voltage of 10 to 30 V is used for control.

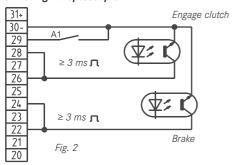
Control voltage "on" = clutch "on"/brake "off" Control voltage "off" = brake "on"/clutch "off"

Caution

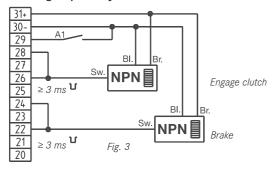

The cables to the coil must not short-circuit or have a conductive connection to earth (electrical bonding), the PEN conductor or other coils.

INTORQ 14.640.10.048 EDS 48 electronic dual switch

Connection examples

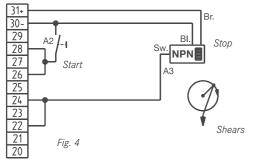

Control via pulses

Switching via contacts


Pressing switch a2 switches the clutch "on" (start), if a1 is not closed. The pulse must be \geq 3 ms and is saved until switch a3 is closed for at least 3 ms (stop). If a3 remains closed and switch a2 gives the start command, the brake switches "off" and the clutch "on".

Switching via optocoupler

This example is as Fig. 1, but an optocoupler or transistors are used instead of contacts.

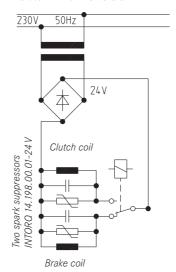

Switching via proximity switch

This example is as Fig. 1, but NPN proximity switches (e.g. type 14.666.03.001, three-wire version) are used instead of contacts.

Colours: bk. = black/bl. = blue/br. = brown

Example of pulse control

A cutting blade is driven by a cam.

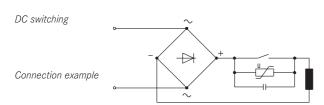

Proximity switch a3 (type 14.666.03.001) should cause it to stop automatically after one revolution following the start pulse. The start command is issued via switch a2.

DC switching

The performance of both the clutch and brake coils must be taken into account when dimensioning a transformer rectifier.

DC switching means short switch-on and switch-off times, but requires a spark suppressor to protect the contacts against high induced voltages during switch-off.

E clutch - E brake version


Clutch is energised to engage Brake is energised to engage

INTORQ 14.198.00.0□ universal spark suppressor

The universal spark suppressor limits the induced voltages which occur when switching off all clutches and brakes on the DC side to safe values. Otherwise, these induced voltages might damage coils and switches. Therefore, VDE 0580 requires appropriate protective measures to avoid excessive switch-off surges and overvoltages.

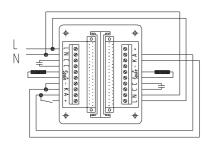
Four versions of the universal spark suppressor are available for the following voltage ranges:

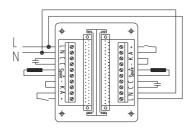
Туре	Coil voltage U	Coil power P _{max}
INTORQ 14.198.00.01	24 V – 50 V	110 W
INTORQ 14.198.00.02	50 V – 120 V	110 W
INTORQ 14.198.00.03	120 V – 200 V	110 W
INTORQ 14.198.00.04	200 V – 250 V	110 W

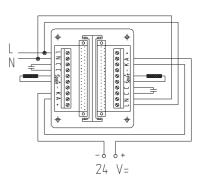
DEG and DOSS high-speed switchgear

High-speed operation with INTORQ 14.621.14.(16)□□□ DEG double European device

Working in conjunction with DEG high-speed switchgear, the clutch-brake combinations achieve excellent positioning accuracy.


The 24 V coils on the housed clutches can be connected to the DEG device on a 220 V/240 V mains.


The coil current (two coils up to a maximum of 100 W) is switched by semiconductors and is free of wear; DEG devices are controlled via auxiliary contacts, control voltages or proximity sensors.


DEG high-speed switchgear is dimensioned as a constant current source. The rated current flows in the solenoids regardless of whether the coil is cold or warm. The torque remains the same whether the operating status is cold or warm.

We supply DEG high-speed switchgear as built-in units.

Connection examples

Control with one contact

Control with two contacts

Control with PLC or control voltage

DOSS double high-speed switchgear INTORQ 14.621.13.□□□

We recommend the DOSS double high-speed switchgear for applications in which start/stop pulses are used for control.

The switchgear mentioned above can be found in our "Electronic Switchgear and Accessories" catalogue which is available on request.

INTORQ - Sales and service around the world

Our customers can reach us at any time from anywhere in the world. We work with Lenze's network of worldwide sales offices and Service Centres.

Our helpline (008000 24 46877) will provide you with expert advice, 24 hours a day, 365 days a year.

Information about our products, catalogues and Operating Instructions can be found at **www.intorq.de**.

Contact Lenze Service Centres and sales partners via the Lenze website at **www.Lenze.com**.

INTORQ GmbH & Co. KG

Postfach 1103 D-31849 Aerzen

Wülmser Weg 5 D-31855 Aerzen

Tel +49 (0)5154/9539-01 Fax +49 (0)5154/9539-10 E-mail info@intorq.de

www.intorq.de

INTORQ

setting the standard