
Geared servo motor selection

Geared servo motor selection

General information

The selection of drives with geared servo motors is explained below.

The target of the rating

is to select the best-fit geared servo motor which reliably meets the requirements of the application. The specific application conditions are taken into account:

- Ambient temperature, installation height
- mounting conditions
- load profile

For the sake of simplicity, the rating for standard duty cycles and for general load profiles is shown:

- constant load, duty cycle S1 *
- short-time duty **S2**
- intermittent duty S3
- continuous operation S6 *
- load profiles for an application-specific load-collective

* For the sake of a long life, Lenze recommends to use motors with low rated speed for the duty cycles S1 and S6.

The rating includes 3 elements:

- Fulfillment of the **drive function** → is the selected drive able to perform the speeds, torques, accelerations required?
- **mechanical strength** → is the drive able to mechanically transmit the occurring torques and forces?
- **thermal rating** → does the operating temperature stay within the permissible limits to avoid early ageing?

Drive function

Based on the process requirements values, a drive with all operating points being within the speedtorque-limiting characteristics is selected. As a result, a gearbox with a suitable ratio with a motor with suitable speed with a controller with sufficient max. current is selected. Further limits (Max. speed, installation height) are shown in the tables.

Mechanical strength

Based on the forces and torques occurring, a drive is selected by means of the service factor and the gearbox torque, which features sufficient mechanical strength (fatigue strength of the gearing for the periodically occurring torques and time strength for the sporadically occurring torques).

Thermal rating

The thermal rating for the **controller** is made by means of continuous controller current and/or by means of the obtainable continuous torque of the combination from motor and controller. The thermal rating for the **motor** is made by means of the average speed and the r.m.s.torque. The thermal rating for the **gearbox** is made by means of the average speed and the continuous torque of the combination from motor and gearbox. The average speed indicated should be understood as a recommendation. The speed of the drive should not exceed the values specified.

3-step rating

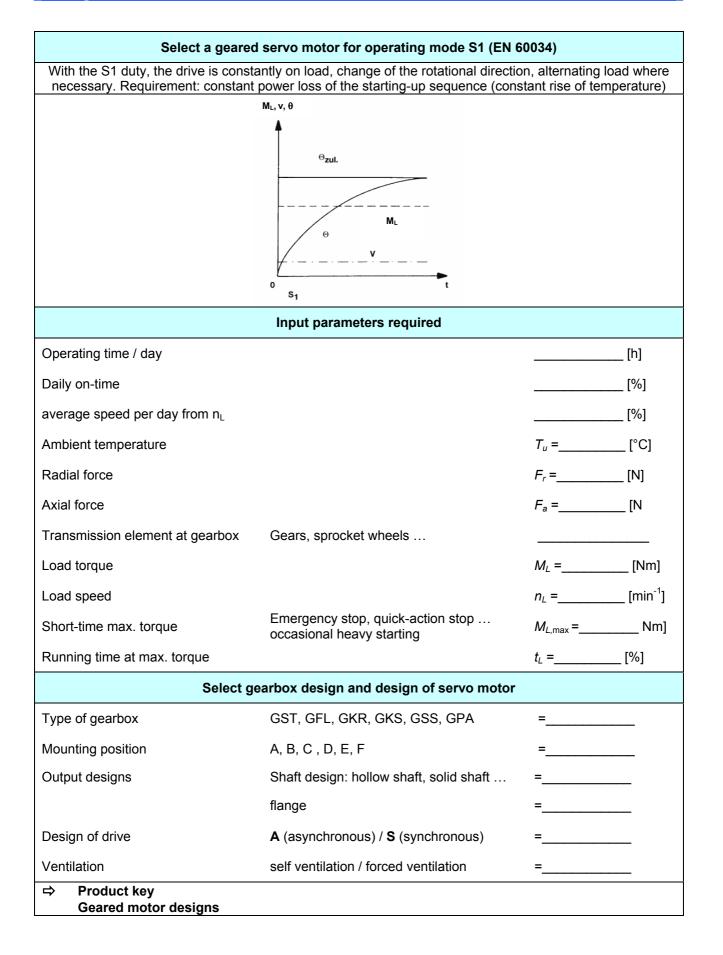
Geared servo motors are selected in 3 steps which are broken down into the a.m. duty cycles (S1, S2, S3, S6, profile):

Determination of the input parameters, such as:

- Load torque, load speed, acceleration (for speed profiles several operating points with periods)
- max. torque
- mounting position
- force load
- type of torque transmission

Calculation of the process requirement values, such as

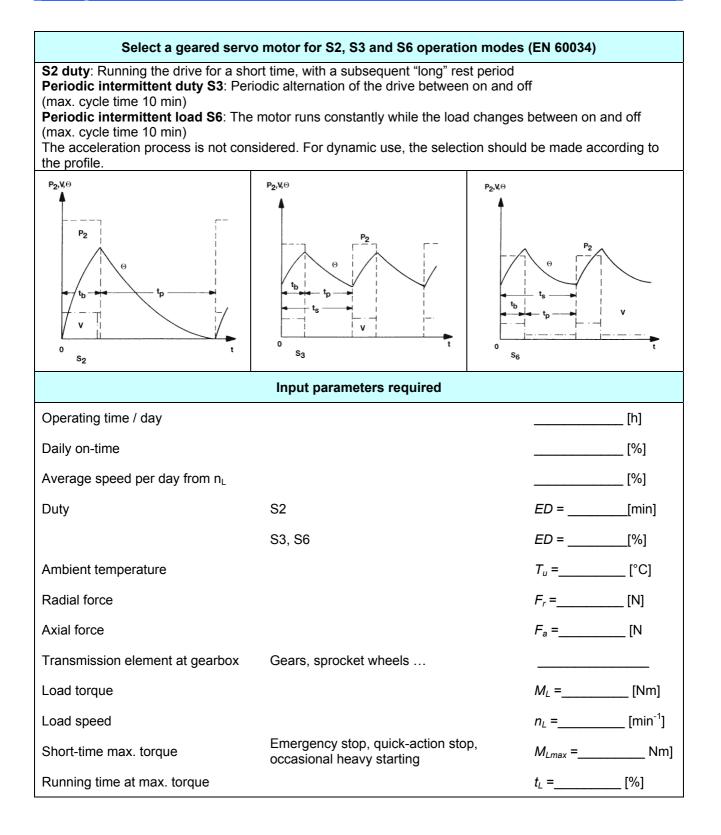
- Total torques from load torque and acceleration
- max. load torque
- r.m.s. torque
- average speed
- max. speed


Selection of the geared servo motor and examination of the selection for fulfillment of requirements such as:

- Calculation of the total torque on motor side (r.m.s. torque, max. torque)
- thermal check of motor by means of r.m.s. torque and average speed
- o thermal check of gearbox by means of average speed and r.m.s. torque
- Max. gearbox torque examination by means of periodically occurring torques and sporadically occurring max. torques
- o Examination motor-controller-combination by means of max. torques
- o Examination of load equilization
- o Examination of the axial and radial force of the gearbox

Special attention should be given to the selection and **examination of the drive** to obtain a **reliable selection**. The individual elements of selection and examination are explicitly explained in the following. The observance of the limits of the geared servo motor drive is given priority (functional limits, thermal limits, mechanical limits).

Select a geared servo r	notor for kinematics profiles,
	I, S2, S3, S6, speed profile
Suitable for simple linear speed profiles, not for S- curves etc. For complex selections or rating at max. load please contact your nearest Lenze representative.	Standard operating conditions - 1-shift operation 8 h/day, 240 days/year - Ambient temperature up to 30°C - 70% on-time every day - Average speed 80% of the rated speed - Mounting position A - Installation height up to 1000m
Considered	Not considered
 Rated mains voltage AC 400 V, 3 phases Installation height max. 1000 m, Ambient temperature 30°C max. Selection with speed-torque-charcteristics 9300 and ECS with mains voltages 400 V, 3 phases Process requirements Preselection of the motor Load capacity of the gearbox Specified gearbox ratio Max. permissible gearbox input speed Axial and radial loads of the gearbox output shaft Total reduced inertia Load equilization of the inertias 	 Accurate consideration of the motoring / dynamic efficiency Accessories such as brake chopper, brake resistors, Feedback systems, mains filter Current derating of 9300 Servo at low speeds Special ambient conditions such as special mains properties, increased temperatures / installation heights, contaminations, outdoor area Explosion protection maximum standstill current Inhibit the controller for thermal discharge of the drive
	of a driving axle
Drive con- troller Motor Mmax NN MN PN Jew Gearbox t	motor
J _{GM} Gearbox + (reduced to	motor J _L



Determine the size of gearbox by means of forces				
Determination	Determination of the axial and radial forces acting on the gearbox shaft			
	Calculation	Check		
Transmission element	f _z =			
Radial force (from input parameter or from transmission element)	$F_r = 2000 \cdot \frac{M_{\max} \cdot f_z}{d_w[mm]}$	$F_r \leq F_{r,zul} = f_w \cdot f_\alpha \cdot F_{r,Tab} \leq f_w \cdot F_{r,max}$		
Axial force	<i>F</i> _a =	$F_a \leq F_{a,zul} = F_{a,Tab}$ bei $F_r = 0$		
$ \begin{array}{c} \Rightarrow \mathbf{f_z} \rightarrow \text{Page 17} \\ f_w, f_\alpha, F_{r, Tab}, F_{a, Tab} \rightarrow \text{perm} \end{array} $	nissible radial and axial forces $ ightarrow$ technical da	ta depending on type of gearbox		
D	etermination of the speed reducti	ion factor		
Ambient temperature	k _{n1} =			
Mounting position	k _{n2} =			
average daily speed (in % from daily on-time ED				
$\Rightarrow \qquad \mathbf{k}_{n1}, \mathbf{k}_{n2} \ \mathbf{k}_{n3} \rightarrow \text{Page 16}$				
	$\boldsymbol{k}_n = \boldsymbol{k}_{n1} \cdot \boldsymbol{k}_{n2} \cdot \boldsymbol{k}_{n3}$			
Select an	d check combination geared serv	o motor / inverter		
	Check	Selection		
Output torque	$M_2 \ge M_L$	<i>M</i> ₂ = [Nm]		
Output speed	$n_{2therm} \ge \frac{n_L}{k_n}$ (Recommendation)	$n_{2therm} = $ [min ⁻¹]		
	$n_{2Eck} \ge n_L$	$n_{2Eck} = $ [min ⁻¹]		
No alternating load	$M_{2GN} \ge M_{L,\max}$			
At alternating load	$M_{2GN} \ge M_{L,\max} \cdot 1.4$	<i>M</i> _{2<i>GN</i>} = [Nm]		
Short-time max. torque	$M_{2,\max} \ge M_{L,\max}$	<i>M</i> _{2,max} = [Nm]		
Ratio		i =		
Servo inverter	Suitable controllers for S1 duty are shown in the selection tables; where necessary, select larger controller for $M_{L,max}$ a	Type = E [kHz]		
$\Rightarrow M_2, n_{2therm}, n_{2Eck}, M_{2GN},$	$M_{2,\max}$, <i>i</i> , servo- inverter $ ightarrow$ Selectio	on tables according to type of gearbox		

Determination of the required gearbox load capacity			
Intensity	$k_{I} = \frac{M_{L,\max}}{M_{2}}$	k _l =	
Operating factor		k =	
⇒ k → Page 17/18			
	Check	Selection	
Load capacity	c <u>></u> k	c =	
\Rightarrow $c \rightarrow$ Selection tables according to type of gearbox			
Determin	Determination of the combination geared servo motor / inverter		
➡ see fax orders			
Selection of further accessories, such as brake chopper for generating operation, mains filter, etc.			
⇒ see product catalog servo i	nverters		

	Determine	the design of g	earbox and se	ervo motor	
Type of gearbox		GST, GFL, GKR	, GKS, GSS, C	GPA =	
Mounting position		A, B, C , D, E, F		=	
Output side designs		Shaft design: ho	llow shaft, soli	d shaft =	
		flange		=	
Drive design		A (asynchronou	s) / S (synchro	nous) =	
Ventilation:		self-ventilation /	forced ventilat	ion =	
➡ Product key Geared motor de	esigns				
		the size of gea	box by means	s of forces	
Determ	ination of the	axial and radial	forces acting	on the gearbox sha	aft
	Calcu	lation		Check	
Transmission element					
	Radial force (from input parameter or from transmission element) $F_r = 2000 \cdot \frac{M_{max} \cdot f_z}{d_w [mm]}$ $F_r \leq F_{r,zul} = f_w \cdot f_\alpha \cdot F_{r,Tab} \leq f_w \cdot F_{r,max}$				
Axial force	F _a =_	$F_a = $ $F_{a,zul} = F_{a,Tab}$ bei $F_r = 0$			
$\begin{array}{l} \Rightarrow f_z \rightarrow \text{Page 17} \\ f_w, f_\alpha, F_{r,Tab}, F_{a,Tab} \rightarrow \text{permissible radial and axial forces} \rightarrow \text{Technical data depending on type of gearbox} \end{array}$					
	Determ	nation of the sp	beed reduction	n factor	
Ambient temperature		<i>k</i> _{n1} =			
Mounting position		k _{n2} =			
average daily speed (in on-time ED	% von n_L) and	daily k _{n3} =			
$\Rightarrow \mathbf{k}_{n1}, \mathbf{k}_{n2}, \mathbf{k}_{n3} \rightarrow$	Page 16				
	Speed	d correction facto	or average spe	ed k _m	
Duty cycle S2 Duty cycle S3 Duty cycle S6			cycle S6		
ED [min]	k _m	ED [%]	k _m	ED [%]	k _m
10	0,16	15	0,15	15	
30	0,50	25	0,25	25	1,00
60	1,00	40	0,40	40	.,00
90	1,00	60	0,60	60	
		$k_n = \frac{k_{n1}}{k_n}$	$\frac{\kappa_{n2} \cdot \kappa_{n3}}{\kappa_m}$		

Determination c	f the overload fac	tor k L (guiding va	alues) depending	on the applicatior	n / kinematics
S2		C	63		S6
ED [min]	k_L	ED [%]	k _L	ED [%] <i>k</i> _L	
10	1,4-1,5	15	1,4-1,5	15	1,5-1,6
30	1,15-1,2	25	1,3-1,4	25	1,4-1,5
60	1,07-1,1	40	1,15-1,2	40	1,3-1,4
90	1,0-1,05	60	1,05-1,1	60	1,15-1,2
		k _L =			
	Select and chec	k combination	geared servo m	otor - inverter	
	Chec	ĸ	S	election	
Output torque	$M_2 \ge$	$\frac{M_L}{k_L}$	М	<i>M</i> ₂ = [Nm]	
Output speed	n _{2thern}	$n_{2therm} \geq \frac{n_L}{k_n}$		$n_{2therm} = $ [min ⁻¹]	
	n _{2Eck}	$n_{2Eck} \ge n_L$		n_{2Eck} = [min ⁻¹]	
no alternating load	$M_{_{2GN}}$	$M_{2GN} \ge M_{L,\max}$		<i>M</i> _{2GN} = [Nm]	
at alternating load	M_{2GN}	$U_{2GN} \ge M_{L,\max} \cdot 1,4$.1	
Short-time max. torq	ue $M_{2,\text{max}}$	$M_{2,\max} \ge M_{L,\max}$		<i>M</i> _{2,max} = [Nm]	
Ratio			i =	=	
Thermally effective o point	perating $(i \cdot k_n)$	$\cdot n_L$, $\frac{M_L}{k_L \cdot i \cdot \eta_0}$	_) be _g th	elow the S1-torque e servo motor	characteristic of
all operating points	(<i>i</i> · <i>n</i> _L	$(i \cdot n_L, \frac{M_L}{i \cdot \eta_G})$		elow the max. torque the combination s verter	
Servo inverter			T	/pe = E	[kHz]
	$B_{2Eck}, M_{2GN}, M_{2,max}$			les acc. to type of gear	box

Determination of the required gearbox load capacity			
Intensity	$k_{I} = \frac{M_{L,\max}}{M_{2}}$	<i>k</i> ₁ =	
Operating factor		k =	
⇒ k → Page 17/18			
	Check	Selection	
Load capacity	c <u>></u> k	c =	
\Rightarrow $c \rightarrow$ Selection tables acco	\Rightarrow $c \rightarrow$ Selection tables according to the type of gearbox		
Determir	Determination of the combination geared servo motor / inverter		
➡ see fax orders			
Selection of further accessories, such as brake chopper for generating operations, mains filter, etc.			
⇒ see product catalog servo	inverters		

	ervo motor with speed profiles / load cycle time <u><</u> 1 min	э,	
The profiles as exemplified below should be d	letermined. A thumbsketch of the hole of the following calculations.	e motion to be	implemented
$\frac{v_{[m/s]}/[u/min]}{0} \frac{1}{1} \frac{1}$			t [s]
Input p	parameters required		
Operating time / day			[h]
Daily on-time			_ [%]
average speed per day from n_{L}			_ [%]
Ambient temperature		<i>T_u</i> =	[°C]
Radial force		<i>F</i> _{<i>r</i>} =	[N]
Axial force		F _a =	[N
Transmission element at gearbox Gea	ars, sprocket wheels		
Mass moment of interia		<i>J</i> _{<i>L</i>} =	[kgm ²]
Time response of th	ne load for the individual periods	z	
Load torque		<i>M_{L,z}</i> =	[Nm]
Load speed		∆n _{L,z} =	[min ⁻¹]
Individual periods		$\Delta t_z =$	[s]
	$=\sum \Delta t_z$	T =	_[s]
	ergency stop, quick-action p occasional heavy starting	<i>M_{L,max}</i> =	Nm]
Running time at max. torque		<i>t</i> _L =	_[%]

Select gearbox design and design of servo motor			
Type of gearbox	GST, GFL, GKR, GKS, GSS	, GPA =	
Mounting position	A, B, C , D, E, F	=	
Output designs	Shaft design: hollow shaft, so	olid shaft =	
	flange	=	
Drive design	A (asynchronous) / S (synch	ronous) =	
Ventilation	self ventilation / forced ventil	ation =	
➡ Product key Geared motor designs			
Dete	ermine the size of gearbox by mea	ans of forces	
Determination	of the axial and radial forces actir	ng on the gearbox shaft	
	Calculation	Check	
Transmission element	f _z =		
Radial force (from input parameter or from transmission element)	$F_r = 2000 \cdot \frac{M_{\max} \cdot f_z}{d_w[mm]}$	$F_r \leq F_{r,zul} = f_w \cdot f_\alpha \cdot F_{r,Tab} \leq f_w \cdot F_{r,max}$	
Axial force	F _a =	$F_a \leq F_{a,zul} = F_{a,Tab}$ bei $F_r = 0$	
$ \begin{array}{c} \Rightarrow \mathbf{f_z} \rightarrow \text{Page 17} \\ \mathbf{f_w}, \mathbf{f_a}, \mathbf{F_{r,Tab}}, \mathbf{F_{a,Tab}} \rightarrow \text{perm} \end{array} $	nissible radical and axial forces $ ightarrow$ technical d	lata depending on type of gearbox	
	Determination of the speed reduct	ion factor	
Ambient temperature	k _{n1} =		
Mounting position	k _{n2} =		
average daily speed (in % of n_L on-time ED) and daily k_{n3} =		
$\Rightarrow \mathbf{k}_{n1}, \mathbf{k}_{n2}, \mathbf{k}_{n3} \rightarrow \text{Page 16}$			
	$\boldsymbol{k}_n = \boldsymbol{k}_{n1} \cdot \boldsymbol{k}_{n2} \cdot \boldsymbol{k}_{n3}$		

Calculation of the process requirements values			
Output torque	$M_{z} = M_{L,z} + J_{L} \cdot \frac{2\pi \Delta n_{L,z}}{\Delta t_{z}} = M_{L,z} + 0,$	$105 \cdot \frac{\Delta n_{L,z}}{\Delta t_z} \cdot J_L$	
Max. torque	$M_{P,\max} = \max(M_z)$	-	
RMS torque	$M_{eff} = \sqrt{\frac{1}{T} \sum_{z} M_{z}^{2} \cdot \Delta t_{z}}, T \le 1$ min		
average speed	$n_m = \overline{ n_{L,z} } = mean - value(n_{L,z}) = \frac{1}{T} \sum_{z}$	$n_{L,z} \cdot \Delta t_z$	
Max. speed	$n_{\max} = \max(n_{L,z})$		
	Check	Preselection	
Output torque	$M_2 > M_{\rm eff}$	<i>M</i> ₂ = [Nm]	
Output speed	$n_{2therm} \ge \frac{n_m}{k_n}$ (recommendation)	$n_{2therm} = $ [min ⁻¹]	
	$n_{2Eck} \ge n_{max}$	n_{2Eck} = [min ⁻¹]	
Max. speed	$n_{\mathrm{l,max}} \leq n_{\mathrm{max}} \cdot i$	$n_{1,\max} = ___ [\min^{-1}]$	
No alternating load	$M_{_{2GN}} \ge M_{_{P,\max}}$	<i>M</i> _{2GN} = [Nm]	
At alternating load	$M_{2GN} \ge M_{P,\max} \cdot 1.4$	1012GN [1111]	
Ratio		i =	
Load equilization factor for optimum dynamics response/closed-loop performance	Requirement $k_J = 0,510$ Optimum $k_J = 1$	$k_J = \frac{J_L}{i^2 \cdot (J_{GM} + J_B)}$	
	Check of the motor torques		
Acceleration torque	$M_{S,z} = M_z + (J_{GM} + J_B) \cdot \frac{2 \pi \Delta n_{L,z}}{\Delta t_z} \cdot i^2$	(with consideration of the inertia of masses of the gearbox, motor and brake)	
RMS torque	$M_{S,eff} = \sqrt{rac{1}{T}\sum_{z}M_{S,z}^{2}\cdot\Delta t_{z}}$		
$\Rightarrow \qquad M_2, n_{2therm}, n_{2Eck}, M_{2C}$ $n_{1,max} \rightarrow \text{Page 16}$	$_{_{GN}}$, i,J_{GM} $ ightarrow$ Selection tables according to the type of	gearbox	
Thermally effective operating point	$\left(i \cdot \boldsymbol{n}_m, \frac{\boldsymbol{M}_{S,eff}}{i \cdot \eta_{G}}\right)$	below the S1-torque characteristic of the servo motor	
All operating points	$\left(i \cdot n_{L,z}, \frac{M_{S,z}}{i \cdot \eta_{G}}\right)$	below the max. torque characteristic of the servo motor inverter combination	
Servo inverter	Type = E[kHz]		
→ Torque characterist	ics \rightarrow Technical data servo motors		

Determination of the required gearbox load capacity			
Intensity	$k_{I} = \frac{M_{L,\max}}{M_{2}}$	<i>k</i> ₁ =	
Operating factor		k =	
⇒ k → Page 17/18			
	Check	Selection	
Load capacity	c <u>></u> k	c =	
\Rightarrow c \rightarrow Selection tables according to type of gearbox			
Determir	Determination of the combination geared servo motor - inverter		
➡ see fax orders			
Selection of further accessories, such as brake chopper for generating operation, mains filter, etc.			
➡ see product catalog servo	inverters		

Maximum gearbox input speeds Max. input speeds which may in no case be exceeded.

Motor type	Input speed n_{1,max} [min ⁻¹]	Motor type	Input speed n_{1,max} [min ⁻¹]
MCA10	5000	MCS06	5000
MCA13	5000	MCS09	5000
MCA14	5000	MCS12	5000
MCA17	5000	MCS14	5000
MCA19	4000	MCS19	4000
MCA21	4000		

Speed correction factors

Ambient temperature

<i>T_u</i> [°C]	k _{n1} [-]
20	1,1
30	1,0
40	0,85

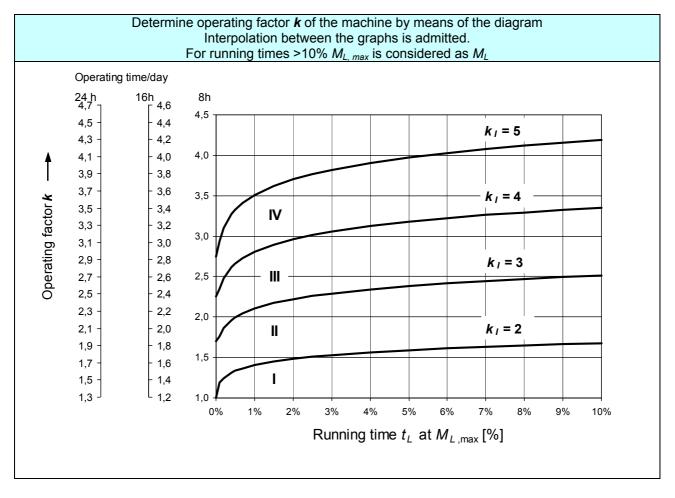
Mounting positions

Type of	Mounting position factor k_{n2}						
gearbox	Α	В	С	D	E	F	
GST	1,0	0,8	0,8	0,7*	1,0	1,0	
GFL	1,0	0,8	0,85	0,7*	0,9	0,8	
GKS	1,0	0,8	0,8	0,7*	0,8	0,8	
GKR	1,0	0,9	0,8	0,8*	0,95	0,95	
GSS	1,0	0,9	0,8	0,8*	0,95	0,95	

* the average input speed n_1 should not exceed 1500 min⁻¹

Daily operating time and average speed

Daily operating time	average daily speed referring to load speed <i>n_L</i>				
	100%	80%	60%	50%	25%
ED Correction factor k_{n_3}					
15%	1,25	1,29	1,35	1,38	1,52
25%	1,15	1,20	1,25	1,29	1,42
40%	1,06	1,11	1,16	1,20	1,33
60%	0,99	1,03	1,08	1,12	1,25
70%	0,96	1,00	1,05	1,09	1,22
100%	0,89	0,93	0,99	1,02	1,15

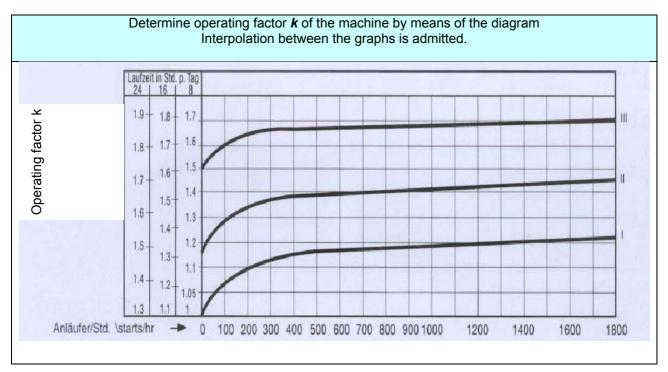


Radial force coefficient of the transmission elements

Transmission element	fz
Gears	1,12
Sprocket wheels	1,25 1,4
Crown gears	1,5
Small V-belt pulleys according to prestress	1,52,0

GST, GFL, GKS, GKR, GSS

Operating factors



GPA

Intensity and load class

Intensity k _l	Load class
<i>kl</i> ≤ 1,1	I
1,1 < <i>kl</i> ≤ 1,25	II
1,25 < <i>k</i> /≤ 2	II

Operating factors

